Sodium L-Glutamate-Induced Physiological Changes in Lactobacillus Brevis NCL912 During GABA Production Under Acidic Conditions
نویسندگان
چکیده
Corresponding Author: Jian Mao, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China Tel: +86-510-8532-9062, Fax: +86-510-8591-2155, E-mail: [email protected] Abstract: Previous studies showed that γ-aminobutyric acid (GABA) can protect some GABA-producing bacteria against acid stress through glutamate decarboxylation. However, the acid stress mechanism is a comprehensive network related to numerous genes and proteins. Other than the Glutamate Decarboxylase (GAD)/GABA antiporter system, limited information is available about the physiological modifications that occur in Lactobacillus brevis during GABA production under acidic conditions. Therefore, this study aims to investigate the physiological modifications that occur in a GABA-producing L. brevis NCL912 during GABA production under acidic conditions. The differential protein expression of L. brevis NCL912 under different culture conditions was determined by using proteome analysis. Eleven of the protein spots were identified by mass spectrometry. Among the 11 proteins, 10 were upregulated, whereas one was downregulated. The function of downregulated protein was unknown. The upregulated proteins were involved in stress response, protein synthesis, quorum sensing, glycolysis and membrane lipid synthesis. Stress response, protein synthesis, glycolysis-related proteins are general acid stress proteins, while LuxS-dependent quorum sensing system and membrane lipid synthesis-related proteins might be induced by sodium L-glutamate during GABA production under acid stress. In conclusion, sodium L-glutamate might trigger other acid-tolerance responses, except the GAD/GABA system in L. brevis NCL912 during GABA production under acidic conditions.
منابع مشابه
Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation
BACKGROUND Gamma-aminobutyric acid is a major inhibitory neurotransmitter in mammalian brains, and has several well-known physiological functions. Lactic acid bacteria possess special physiological activities and are generally regarded as safe. Therefore, using lactic acid bacteria as cell factories for gamma-aminobutyric acid production is a fascinating project and opens up a vast range of pro...
متن کاملCharacterization of a Potential Probiotic Lactobacillus brevis RK03 and Efficient Production of γ-Aminobutyric Acid in Batch Fermentation
Lactic acid bacteria were isolated from fish and evaluated for their γ-aminobutyric acid (GABA)-producing abilities. Out of thirty-two isolates, Lactobacillus brevis RK03 showed the highest GABA production ability. The effects of various fermentation parameters including initial glutamic acid level, culture temperature, initial pH, and incubation time on GABA production were investigated via a ...
متن کاملHydrogel Film-Immobilized Lactobacillus brevis RK03 for γ-Aminobutyric Acid Production
Hydrogels of 2-hydroxyethyl methacrylate/polyethylene glycol diacrylate (HEMA/PEGDA) have been extensively studied for their use in biomedical and pharmaceutical applications owing to their nontoxic and highly hydrophilic characteristics. Recently, cells immobilized by HEMA/PEGDA hydrogels have also been studied for enhanced production in fermentation. Hydrogel films of HEMA/PEGDA copolymer wer...
متن کاملIdentification and molecular cloning of glutamate decarboxylase gene from Lactobacillus casei
Gamma-amino butyric acid (GABA) possesses several physiological functions such as neurotransmission, induction of hypotension, diuretic and tranquilizer effects. Production of GABA-enriched products by lactic acid bacteria has been a focus of different researches in recent years because of their safety and health-promoting specifities. In this study, glutamate decarboxylase (gad) gene of a loca...
متن کاملSubmerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production
γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of γ-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were...
متن کامل